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Abstract
The thermopower of asymmetrical quantum wires and constrictions in an
arbitrarily directed magnetic field is investigated. An analytic expression
convenient for analysing the thermopower is obtained. The oscillations in
the thermopower are studied. It is shown that the thermopower as a function
of a magnetic field can undergo Aharonov–Bohm and Shubnikov–de Haas
oscillations.

1. Introduction

The physical properties of quantum constrictions and wires have attracted growing attention in
view of their unique physical properties. In particular, in these structures the quantization of
conductance is widely studied [1–3]. However, the observation of conductance is possible only
for low temperatures because of temperature smoothing of the thresholds of the conductance
steps. The study of thermopower can provide additional scope for studying physical properties
of quantum wires and constrictions. This is connected with the following factors. First,
the thermopower can provide more information than the study of conductance [4]. Second,
quantum wires and constrictions can be used as elements for low-temperature thermometers [5].

The thermopower of quantum contacts and wires is widely experimentally studied.
For example, the thermopower of quantum GaAs contacts was investigated in [5, 6], the
thermopower of Au contacts was studied in [7], AuFe wires were investigated in [8]. These
experiments have shown that the thermopower is very sensitive to the form of the contacts and
wires.

The theoretical studies of the thermopower [9–11], as a rule, are based on the numerical
analysis of the Cutler–Mott formula (5). A general formalism for thermoelectric transport in
the case of microstructures with any number of terminals was developed in [12].

We study the thermoelectric properties of a quantum wire placed in an arbitrarily directed
magnetic field B(Bx, By, Bz) using the parabolic confinement potential
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U(x, y) = m∗

2
(�2

x x2 + �2
y y2). (1)

Here m∗ is the effective electron mass, and the characteristic frequencies � j ( j = x, y)

determine the semi-axes of the elliptic cross-section of the wire l j = √
h̄/4m∗� j .

In this case the discrete part of the spectrum of the one-electron states is given by the
formula [13]

εmn = h̄ω1(m + 1/2) + h̄ω2(n + 1/2) (2)

where n, m = 0, 1, 2, . . ., and

ω1,2 = 1
2

{[
�2

x + �2
y + ω2

c + 2�x�y

√
1 + (ωx/�y)2 + (ωy/�x)2

]1/2

±
[
�2

x + �2
y + ω2

c − 2�x�y

√
1 + (ωx/�y)2 + (ωy/�x)2

]1/2
}

, (3)

where ωc = |e|B/m∗c is the cyclotron frequency, and ω j = |e|B j/m∗c ( j = x, y, z) are the
components of the cyclotron frequency.

We use the saddle point potential to model the geometric confinement potential of a
quantum constriction [14]

V (x, y, z) = V0 + 1
2 m∗(�2

x x2 + �2
y y2 − �2

z z2). (4)

Here V0 is the potential at the saddle point. The frequency �z = h̄/m∗l2 is determined by
the characteristic length of the constriction l. The characteristic frequencies � j ( j = x, y)

determine the semi-axes of the elliptic cross-section of the constriction l j = √
h̄/4m∗� j .

The discrete part of the spectrum of electrons placed in an arbitrarily directed magnetic
field has a form analogous to (2) but with other frequencies ω1,2 which can be obtained from
the sixth-order algebraic equation [15].

2. Oscillations of the thermopower

In the case when a system consists of two bulk reservoirs connected by a 3D quantum wire
or constriction, there exists a simple relationship between the thermopower S and the ballistic
conductance G (the Cutler–Mott formula [16–18]):

S = −π2k2
BT

3e

∂ ln G

∂µ
, (5)

where µ is the chemical potential.
Equation (5) is inconvenient for analysis because it contains a logarithm of a series.

However, in our previous paper [19] it was shown that if the monotonic part of the conductance
Gmon is much more than the oscillating one Gosc, the formula (5) can be rewritten in the form

S = k2
Bπ2T

3e

1

Gmon

(
∂Gmon

∂µ
+

∂Gosc

∂µ

)
+ O

(
h̄2ω1ω2

µ2

)
. (6)

This estimate holds for a 3D quantum wire and constriction, too. Note that the monotonic
and oscillating parts of the conductance of the wire and constriction were obtained in [20] and
in [15], respectively.

Calculating the corresponding partial derivatives for cases of the quantum wire and
constriction, we get S in the form

S = Smon + Sosc. (7)



Thermopower of three-dimensional quantum wires and constrictions 8017

0

0.02

0.04

0.06

0.08

0.10

0.12

0 1 2 3 4 5 6 7

S 
[k

B
/e

]

T [K]

B = 0 T

B = 0.5 T

B = 1.2 T

Figure 1. Thermopower as a function of the temperature: �x = 1.10 × 1013 s−1, �y =
0.80 × 1013 s−1, µ = 5 × 10−14 erg, θ = π/3, ϕ = π/4.

In the case of a quantum wire the monotonic and oscillating parts are

Swire
mon = 2π2k2

BT

3eµ
, (8)

Swire
osc = 4π4k3

BT 2

3eµ2

∞∑
n=1

(−1)nn

[
ω2

ω1

sin(2πnµ/h̄ω1)

sinh(2π2nkBT/h̄ω1) sin(πnω2/ω1)

+
ω1

ω2

sin(2πnµ/h̄ω2)

sinh(2π2nkBT/h̄ω2) sin(πnω1/ω2)

]
. (9)

In the case of a quantum constriction, we have

Scons
mon = 2π2k2

BT

3e(µ − V0)
(10)

Scons
osc = 4π5k3

BT 2ω3

3e(µ − V0)2

∞∑
n=1

(−1)nn2

×
[

ω2

ω2
1

sin[2πn(µ − V0)/h̄ω1]

sinh(2π2nkBT/h̄ω1) sinh(πnω3/ω1) sin(πnω2/ω1)

+
ω1

ω2
2

sin[2πn(µ − V0)/h̄ω2]

sinh(2π2nkBT/h̄ω2) sinh(πnω3/ω2) sin(πnω1/ω2)

]
; (11)

here, the characteristic frequency ω3 was found in [15]. It is clear from (10) and (11) that
there exists a limiting transition from a quantum constriction to a quantum wire if we assume
V0 = 0 and ω3 → 0.

We can see from figure 1 that the thermopower of a quantum wire is a monotonic function
of the temperature and depends strongly on the magnetic field. However, the thermopower is
linearly temperature dependent at higher temperatures (more than 5 K). There is an analogous
dependence in the case of a 2D quantum channel [19] and a 3D quantum constriction.

It follows from (9) and (11) that the oscillating part of the thermopower is a sum of two
terms with periods �µ = h̄ω1 and �µ = h̄ω2, (figure 2). In the case of quantum constrictions,
the periods of oscillations are the same as in the case of the wire. Note here that the positions
of resonance peaks correspond to thresholds of conductance quantization. This is due to the
opening of a new channel for conduction.
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Figure 2. Oscillations of the thermopower as a function of the chemical potential: �x =
1.35 × 1013 s−1, �y = 1.20 × 1013 s−1, B = 0.4 T, θ = π/4, ϕ = π/3.

Below, we consider only the case of the quantum wire because the behaviour of the
thermopower of the quantum constriction as a function of a magnetic field is analogous to the
behaviour of the thermopower of the quantum wire.

The dependence of the thermopower on the magnetic field is stipulated by the relationship
between magnetic and size quantization. Let us consider below two most important cases: the
magnetic field parallel to the wire symmetry axis and the magnetic field perpendicular to the
wire symmetry axis.

2.1. Parallel field

In this case the frequencies ω1,2 are determined by the formulae

ω1,2 = 1
2

{[
(�x + �y)

2 + ω2
c

]1/2 ± [
(�x − �y)

2 + ω2
c

]1/2
}

. (12)

It is interesting to consider two cases: strong size quantization ωc � �x,y and strong
magnetic quantization ωc � �x,y .

In the first case we will study the two significant points: a symmetrical cross-section
(�x = �y = �) and a strongly asymmetrical cross-section.

For the symmetrical wire

ω1,2 = 1
2

[(
4�2 + ω2

c

)1/2 ± ωc

]
; (13)

it is convenient to expand ω1,2 in terms of ωc/�:

ω1,2 � � ± ωc

2
. (14)

This gives the following simple expression for Swire
osc :

Swire
osc = 8k3

Bπ4T 2

3eµ2

∞∑
n=1

n cos(2πnµ/h̄�) sin(πnµωc/h̄�2)

sinh(2π2nkBT/h̄�) sin(πnωc/�)
. (15)

It can be seen from relation (15) that in the symmetrical case the thermopower is periodic in
the magnetic field (Aharonov–Bohm oscillations) with period

�B = 2m∗ch̄�2

eµ
. (16)
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Figure 3. Thermopower of a symmetrical wire as a function of a magnetic field B: � =
1.5 × 1012 s−1, θ = 0, µ = 6 × 10−13 erg, T = 1.5 K.

Note that the weak dependence of the Fourier coefficients on the magnetic field does not destroy
the oscillations; it only modulates their amplitude (figure 3).

In the strongly asymmetrical case (ωc � �x,y and ωc � �x − �y, �x > �y),

ω1 � �x

[
1 +

ω2
c

2(�2
x − �2

y)

]
, ω2 � �y

[
1 − ω2

c

2(�2
x − �2

y)

]
. (17)

In this case, the expression for the oscillating part of the thermopower is the sum of two terms
periodic in B2 with periods

� j (B2) = 2m∗2c2h̄� j (�
2
x − �2

y)

e2µ
, j = x, y. (18)

It should be noted that, in the case �x � �y, the first oscillating term in equation (9) is
considerably larger then the second term, and �x(B2) � �y(B2). If the frequencies �x and
�y are close, the magnetic-field-induced oscillations of the thermopower have the form of
beats (figure 4).

In the case of a strong magnetic quantization, the frequencies ω1 and ω2 can be presented
in the form

ω1 = ωc

[
1 + o

(
�2

x + �2
y

ω2
c

)]
, ω2 = �x�y

ωc
+ ωco

(
�x�y

ω2
c

)2

. (19)

In this case the major contribution in the thermopower gives the first term (9) (figure 5) with
a period

�

(
1

B

)
= eh̄

m∗cµ
. (20)

That is because of the large denominator sinh(2π2nkBT ωc/h̄�x�y) in the second term. The
second term (9) creates a fine structure of oscillations of the thermopower in strong fields with
the period of the Aharonov–Bohm oscillations

�B = m∗ch̄�x�y

eµ
. (21)

The fine structure of the Shubnikov–de Haas oscillations depicted in figure 5 is plotted in
figure 6. The Aharonov–Bohm oscillations can be observed only at the very low temperatures
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Figure 4. Thermopower as a function of B2: �x = 2.00 × 1012 s−1, �y = 1.71 × 1012 s−1,
θ = 0, µ = 1 × 10−12 erg, T = 4 K.
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Figure 5. Thermopower as a function of a magnetic field B: �x = 1.2 × 1012 s−1, �y =
0.8 × 1012 s−1, θ = 0, µ = 1 × 10−13 erg, T = 3 K.

(<1 K) because the amplitude of the Aharonov–Bohm oscillations is much less than the
amplitude of the Shubnikov–de Haas oscillations and decreases rapidly upon heating.

2.2. Perpendicular field

In this case the frequencies ω1,2 are determined by the formulae (B ‖ Ox)

ω1 =
√

�2
y + ω2

c , ω2 = �x . (22)

It follows from (22) that ω2 does not depend on a magnetic field. Hence the second term (9)
practically does not oscillate as the magnetic field varies because of the weak dependence of
the Fourier coefficients on the magnetic field.

Let us consider two cases: strong size quantization ωc � �x,y and strong magnetic
quantization ωc � �x,y .
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Figure 7. Thermopower as a function of B2: �x = 3.5 × 1012 s−1, �y = 2.7 × 1012 s−1,
µ = 6 × 10−13 erg, θ = π/2, ϕ = 0, T = 3.5 K.

In the case of strong size quantization, from (22) we get

ω1 = �y

[
1 +

1

2

(
ωc

�y

)2
]

. (23)

It is clear that in this case the thermopower is a periodic function with respect to B2 (figure 7)
with the period

�B2 = 2h̄m∗2c2�3
y

µe2
. (24)

In the case of a strong magnetic quantization ω1 = ωc and the thermopower oscillates with the
period of the Shubnikov–de Haas oscillations (20) but, in contrast to the case for the parallel
field, without a fine structure.

Note now that in view of the complexity of the analytic dependence of the thermopower
on the azimuthal θ and polar ϕ angles of the direction of a magnetic field (that is conditioned
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Figure 8. Thermopower of the quantum wire (in units of kB/e) as a function of azimuthal θ and
polar ϕ angles: �x = 1.80 × 1013 s−1, �y = 1.10 × 1013 s−1, µ = 5 × 10−14 erg, B = 1.7 T,
T = 3 K.

by the complexity of the dependence of the ω1,2 on θ and ϕ), a detailed analysis requires
numerical studies. Numerical analysis shows that the thermopower strongly depends on the
direction of a magnetic field (figure 8).

3. Conclusions

We have studied theoretically the thermopower of the anisotropic quantum wires and
constrictions placed in an arbitrarily directed magnetic field. We have shown that the oscillating
part of the thermopower as a function of a chemical potential is the sum of two terms with
periods �µ = h̄ω1 and h̄ω2.

The behaviour of the thermopower as a function of a magnetic field strongly depends on
the relation between the characteristic frequencies of the parabolic confinement potential and
on the magnetic field.

In the case of a parallel field and symmetrical cross-section of the wire the thermopower
undergoes Aharonov–Bohm oscillations with modulated amplitude. In the case of a
strong magnetic quantization for an asymmetric wire, the magnetic field dependence of the
thermopower has the form of Shubnikov–de Haas oscillations with a fine structure determined
by the Aharonov–Bohm oscillations. In the opposite case of a strong size quantization, the
magnetic field dependence of the thermopower is a superposition of two oscillatory terms
periodic in the squared magnetic field. Note that when �x is of the same order of magnitude
as �y, oscillations have the form of the beats. Let us remark that the period of the Aharonov–
Bohm oscillations in the weak fields (16) is equal to two periods in the strong fields (21).

In the case of a perpendicular field and strong magnetic quantization the thermopower
undergoes Shubnikov–de Haas oscillations. In the opposite case of strong size quantization
the thermopower is a periodic function with respect to B2.
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In the case of a symmetrical wire the expression for the frequencies ω1,2 has the form

ω1,2 = 1
2

[(
ω2

c + 2�2 + 2�

√
�2 + ω2

c − ω2
z

)1/2

±
(

ω2
c + 2�2 − 2�

√
�2 + ω2

c − ω2
z

)1/2
]

.

(25)

In this case ω1,2 does not depend on the polar angle and, consequently, the thermopower also
does not depend on this angle. This can be used as a test for defining the deviation of the
cross-section form from the circular one.

Note, in conclusion, that the length of the constriction has an essential effect on the
thermopower (figure 9). In particular, the amplitude of the oscillations of the thermopower
grows less with decreasing effective length. Note the increased smearing of the peaks due to
the more significant role of tunnelling effects in the shorter constrictions.
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